QUESTION BANK ## **ALGEBRA - I** Q 1 Find the general solution of the linear system whose augmented matrix is $$\begin{bmatrix} 1 & -3 & -5 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$ Q 2 Find the general solution of the system $$x_1 - 2x_2 - x_3 + 3x_4 = 0$$ $$-2x_1 + 4x_2 + 5x_3 - 5x_4 = 3$$ $$3x_1 - 6x_2 - 6x_3 + 8x_4 = 2$$ Q 3 For what value(s) of h will y be in Span $\{v_1, v_2, v_3\}$ if $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$ **Q 4** Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. For what value(s) of h is \mathbf{y} in the plane generated by \mathbf{v}_1 and \mathbf{v}_2 ? Q 5 . Let $\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{u} in the plane in \mathbb{R}^3 spanned by the columns of A? (See the figure.) Why or why not? - Q 6 Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing. Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing, and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to Mining, and retains the rest. Determine the exchange table for this economy, where the columns describe how the output of each sector is exchanged among the three sectors. - Q 7 Find the general flow pattern of the network shown in the figure. Assuming that the flows are all nonnegative, what is the smallest possible value for x₄? - Q 8 a. Find the general flow pattern of the network shown in the figure. - b. Assuming that the flow must be in the directions indicated, find the minimum flows in the branches denoted by x_2 , x_3 , x_4 , and x_5 . Q 9 Intersections in England are often constructed as one-way "roundabouts," such as the one shown in the figure. Assume that traffic must travel in the directions shown. Find the general solution of the network flow. Find the smallest possible value for x₆. Q 10 Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Q 11 Let $$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}$$, $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} 3 \\ 7 \\ -5 \end{bmatrix}$. - 1. Are the sets $\{\mathbf{u}, \mathbf{v}\}, \{\mathbf{u}, \mathbf{w}\}, \{\mathbf{u}, \mathbf{z}\}, \{\mathbf{v}, \mathbf{w}\}, \{\mathbf{v}, \mathbf{z}\}, \text{ and } \{\mathbf{w}, \mathbf{z}\} \text{ each linearly independent? Why or why not?}$ - 2. Does the answer to Problem 1 imply that {u, v, w, z} is linearly independent? - 3. To determine if {u, v, w, z} is linearly dependent, is it wise to check if, say, w is a linear combination of u, v, and z? - **4.** Is $\{u, v, w, z\}$ linearly dependent? - Q 12 Let T: R² → R² be the transformation that first performs a horizontal shear that maps e₂ into e₂ .5e₁ (but leaves e₁ unchanged) and then reflects the result through the x₂-axis. Assuming that T is linear, find its standard matrix. [Hint: Determine the final location of the images of e₁ and e₂.] Q 13 Is $$\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$ an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4 \end{bmatrix}$? If so, find the eigenvalue. - Q 14 Is $\lambda = 4$ an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one corresponding eigenvector. - Q 15 For $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$, find one eigenvalue, with no calculation. Justify your answer - Q 16 Determine if the following system is consistent: $$x_2 - 4x_3 = 8$$ $$2x_1 - 3x_2 + 2x_3 = 1$$ $$5x_1 - 8x_2 + 7x_3 = 1$$ Q 17 For what values of h and k is the following system consistent? $$2x_1 - x_2 = h$$ $$-6x_1 + 3x_2 = k$$ - Q 18 Do the three lines $2x_1 + 3x_2 = -1$, $6x_1 + 5x_2 = 0$, and $2x_1 5x_2 = 7$ have a common point of intersection? Explain. - Q 19 Find the general solution of the linear system whose augmented matrix is $$\begin{bmatrix} 1 & -3 & -5 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$ Q 20 Find the general solution of the system $$x_1 - 2x_2 - x_3 + 3x_4 = 0$$ $$-2x_1 + 4x_2 + 5x_3 - 5x_4 = 3$$ $$3x_1 - 6x_2 - 6x_3 + 8x_4 = 2$$ Let $$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$, $\mathbf{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$. Then Span $\{a_1, a_2\}$ is a plane through the origin in \mathbb{R}^3 . Is **b** in that plane? Q 22 For what value(s) of h will y be in Span $\{v_1, v_2, v_3\}$ if $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$ Q 23 Let $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. For what value(s) of h is y in the plane generated by v_1 and v_2 ? Q 24 Let $$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all possible b_1, b_2, b_3 ? Let $$\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$$ and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A ? Why or why not? Q 26 Each of the following equations determines a plane in \mathbb{R}^3 . Do the two planes intersect? If so, describe their intersection. $$x_1 + 4x_2 - 5x_3 = 0$$ $$2x_1 - x_2 + 8x_3 = 9$$ Q 27 Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing. Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing, and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to Mining, and retains the rest. Determine the exchange table for this economy, where the columns describe how the output of each sector is exchanged among the three sectors.